Class X Session 2023-24 Question 8
MATH SAMPLE QUESTION PAPER
Class X Session 2023-24
MATHEMATICS STANDARD (Code No.041)
Question 8
In 𝛥 ABC, DE ‖ AB. If AB = a, DE = x, BE = b and EC = c Then x expressed in terms of a, b and c is:
\begin{flalign} (a)\;\;& \frac{ac}{b}\\ (b)\;\;& \frac{ac}{b+c} \\ (c)\;\;& \frac{ab}{c}\\ (d)\;\;& \frac{ab}{b+c}&\\ \end{flalign}Explanation :
\begin{flalign} Since \; DE\;&\Vert \; AB \; we \;can \;similar \; \triangle \; find \;the\; length&\\ \end{flalign}
Using the properties of basic proportionality theorem we have
\begin{flalign} &\triangle \; CDE \; \sim \; \triangle \; CAB \ \end{flalign}
\[\Rightarrow \; \frac{CE}{CB} =\frac{DE}{AB}\]
\[OR \; \frac{CE}{BE + EC} =\frac{DE}{AB}\]
\[\Rightarrow \; \frac{c}{b+c} =\frac{x}{a}\]
\[OR \; \; {x} =\frac{ac}{b+c}\;...by \; cross \; multiplication\]
Guess the Option and comment below 👇
Comments
Post a Comment