Class X Session 2023-24 Question 24
MATH SAMPLE QUESTION PAPER
Class X Session 2023-24
MATHEMATICS STANDARD (Code No.041)
Question 24
Explanation:
Given that :
\[ \tan(A + B) =\;\sqrt{3} \; and \;\tan(A - B) =\;\frac{1}{\sqrt{3}}\]
First, recognize the angles for which
\[\tan(\theta) = \sqrt{3} \; and \; tan(\theta) = \frac{1}{\sqrt{3}}\] we know that
\[\tan(60^{\circ}) = \sqrt{3} \; and \; tan(30^{\circ}) = \frac{1}{\sqrt{3}}\]
\[\ so,\; A+B \;= 60^{\circ} \; and \; A-B \;= 30^{\circ}\] now add the two equation , we get
\[\ A+B \;= 60^{\circ},---(1)\]
\[\ A-B \;= 30^{\circ},---(2)\]
\[\ so,\;(A+B)+(A-B)\;= 60^{\circ} + 30^{\circ}\]
\[\ or,\;2A\;= 90^{\circ}\]
\[\ or,\;A\;= 45^{\circ}\]
Now Put A value in equation (1) and we get
\[\ from (1),\;B\;= 60^{\circ} - 45^{\circ}\]
\[\therefore \; B\;= 15^{\circ}\]
\[Now \; A\;= 45^{\circ}\; and \; B\;= 15^{\circ}\]
Comments
Post a Comment