Class X Session 2023-24 Question 25
MATH SAMPLE QUESTION PAPER
Class X Session 2023-24
MATHEMATICS STANDARD (Code No.041)
Question 25
Find the value of x if
\begin{flalign}
& 2\;cosec^2(30) + xsin^2(60)-\frac{3}{4}tan^2(30)= 10 &\
\end{flalign}
Explanation:
Now simplify the equation below
\begin{flalign} & 2\;cosec^2(30) + xsin^2(60)-\frac{3}{4}tan^2(30)= 10 &\\ \end{flalign}
\[ \Rightarrow 2\times(2)^2+ x\left(\frac{\sqrt{3}}{2}\right)^2 -\frac{3}{4}\left(\frac{1}{\sqrt{3}}\right)^2 = 10 \]
we know that value of cosec(30) , sin(60)and tan(30) putting their values
\[ \Rightarrow 2\times 4 + x\frac{3}{4} - (\frac{3}{4}\times\frac{1}{3} )= 10 \]
\[ OR \; 8 + \frac{3x}{4} - \frac{1}{4} = 10 \]
\[ OR \; \frac{3x}{4} = \frac{1}{4} +(10-8) \]
\[ OR \; \frac{3x}{4} = \frac{1}{4} +2 \Rightarrow \frac{9}{4} \]
\[ OR \; \frac{3x}{4} = \frac{9}{4} \]
\[\Rightarrow {3x} = {9} \]
\[\therefore{x} = {3} \]
Comments
Post a Comment