Class X Session 2023-24 Question 28
MATH SAMPLE QUESTION PAPER
Class X Session 2023-24
MATHEMATICS STANDARD (Code No.041)
Question 28
\begin{flalign} & Let's\; consider\; the \; unit\; digit\; be\; a\; and \; ten\; digit\; be \; b\; &\\ & so, Original \; number \; is\; a+10b ---(1) \; where\; a\; \neq b &\\ & By \;reversing\; the\; digit\,\; we\; get\; 10b+a ----(2) &\\ & According \;to\; the\; question\;,\; we \; get & \\ & (a+10b) + (10b+a) = 66 &\\ &\Rightarrow 11a +11b = 66 & \\ & or \; a+b = 6 --(3) & \\ & since\; given \; that\; digit \;of \;the\; number \;differ \;2 &\\ & \therefore a-b = 2 ---(4) &\\ & by \; adding \; equations \;2\; and \;3\; we \;get &\\ & (a-b) +(a+b) = 2+6 &\\ & 2a = 8 &\\ & \therefore a = 4 &\\ & now \; put\; a \; value\; in \; eq\; (3) we\; get\; b = 2 &\\ & the \;number\; is \;given\; is\; by\; putting\; values \;(a) \;and \;(b) in \; eq\; (3) \; (4+10 \times 2) = 24 &\\ & This \; is \; case \;1\; or\; other\; case \;would\; be \; 42 &\\ & Hence \; there\; are\; 2 \; such\; number\; \end{flalign}
Comments
Post a Comment